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A systematic study of the possibility of weakly incommensurate phases with a honeycomb 
domain wall network structure in uniaxial systems is presented. Competition between 
breathing entropy, the energy needed to tilt a domain wall, and the core energy of intersec- 
tions can stabilize honeycomb phases in uniaxial systems. Two types of honeycomb networks 
are introduced, O-shaped and X-shaped. Breathing entropy turns out to be much weaker, 
compared to meander entropy, in uniaxial systems than in isotropic ones. Still, our study 
suggests that at the chiral melting transition the commensurate solid melts into an incommen- 
surate fluid with a local short ranged O-shaped network order. Moreover, breathing entropy 
of X-shaped honeycomb networks might change the PokrovskyyTalapov nature of the com- 
mensurate to striped incommensurate solid transition. ‘1’ 1986 Academic Press. Inc. 

1. INTRODUCTION AND SUMMARY 

Commensurate-incommensurate (CI) phase transitions in 2-dimensional systems 
have been investigated intensively in recent years, both theoretically [l-18] and 
experimentally [19-301. Many of the theoretical predictions are detailed, but hard 
to verify experimentally, because the domain wall picture which underlies most of 
the theoretical studies only applies to the so-called weakly incommensurate (IC) 
phase, where the walls are well separated in units of the wall width. For example, in 
physisorption the domain walls seem to have a typical width of 20 to 30 3 [7-9, 
231. Therefore the monolayer is only weakly incommensurate at densities less than 
a few percent above the commensurate (C) density. The monolayer could skip the 
weakly IC phase altogether, by means of a first-order CI transition with a jump in 
density of a few percent. This might be the case for the uniaxial herringbone- 
ordered monolayer of N, on graphite [20,21]. 

On the other hand, the domain wall theory, although detailed in its predictions, 
is far from complete. Several aspects have not been studied yet in a systematic way. 
The aspect which we address in this paper is, whether it is possible that in uniaxial 
systems honeycomb IC (HIC) phases exist intermediate between the C phase and 
the striped IC (SIC) phase. This is the first systematic study of this possibility. Most 

numerical studies were not tuned to observe an incommensurability in both direc- 
tions, or simply did not look for it. 
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An intermediate HIC phase is unlikely in uniaxial systems from an energetical 
point of view. Compared to the SIC structure, walls need to be tilted away from the 
preferred uniaxial direction and to intersect. However, entropy is the trademark of 
domain wall theories. As pointed out by Villain [ 1, 51, honeycomb networks have 
a powerful type of entropy associated with breathing modes. He showed that in 
isotropic systems breathing entropy stabilizes the intermediate HIC phase, between 
the C and SIC solid phases, at all temperatures, even if the intersection energy is 
positive. One cannot rely on energetics to denounce HIC phases, and should con- 
sider their presence in uniaxial systems as well. 

In uniaxial systems the honeycombs will be narrow, with a very small tilt angle 8, 
see Fig. 1. In the anisotropic HIC phase the monolayer will be incommensurate in 
both directions, but the incommensurability in the uniaxial direction will be much 
smaller and probably difficult to detect. Whether the monolayer actually com- 
presses in the uniaxial direction as well, depends on the details of the displacement 
vectors of the domain walls (see Sect. 2). 

The purpose of this paper is to obtain insight into the interplay between entropy 
and energy in domain wall networks; breathing and meander entropy versus the 
energy of a domain wall in the uniaxial direction, the energy to tilt it, and the inter- 
section energy. This study is only qualitative. We generalize Villain’s theory for 
isotropic systems to uniaxial systems. It will be followed up, later, by detailed quan- 
titative (numerical) calculations. 

Our central result is that breathing entropy is very small compared to meander 
entropy in uniaxial systems. This is different from isotropic systems, where at low 
temperatures breathing entropy dominates over meander entropy. The origin of this 
difference is the tilt free energy of the domain walls. In isotropic systems all walls of 
the honeycombs follow easy directions, but in uniaxial systems walls must be tilted 
away from the uniaxial direction to form a network. Meander entropy dominates 
the temperature dependence of the tilt free energy and, thereby, indirectly the 
breathing entropy. 

We focus on two types of honeycomb networks. They are labeled OH and XH to 
reflect their shapes, see Fig. 1. The OH phase turns out to be stable at high tem- 
peratures only and may not exist as a solid but only as a fluid (see Sect. 3 and 4). 
The origin of this is that in the OH network the tilted walls cannot be of the same 
type as the vertical walls (see Sect. 2). The XH phase is the true generalization of 
the isotropic HIC phase. It contains only one type of domain wall (see Sect. 2) and 
extends all the way to zero temperature between the C and SIC solid phases, but is 
extremely narrow (Sect. 5). Each of the two networks has possible implications on a 
different aspect of the theory of CI transitions. 

The OH phase has implications for chiral melting. Many of the theoretical 
predictions only apply when the IC phase can be described by one type of domain 
wall. The chiral 3-state Potts model [lll18] is one of the simplest models that 
include more than one type of domain wall. In the region where both wall types are 
important, beyond the so-called Lifshitz point, the C solid might melt directly into 
an IC fluid. The difference in structure between the IC fluid at the chiral melting 
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FIG. 1. Four types of honeycomb networks: (a) OHl, (b) OH2, (c) XHl, and (d) XH2. The heavy 
lines represent domain walls of type A and the light lines walls of type B. 

transition and the SIC fluid at the other side of Lifshitz point, is the basic 
unresolved question. Our calculation suggests that the OH structure is the 
backbone of the IC fluid at the chiral melting transition. The OH phase appears in 
our phase diagram precisely there where chiral melting should take place in more 
sophisticated treatments. The OH phase is only stable beyond a multicritical point, 
which we associate with the Lifshitz point. If the OH network is indeed the 
backbone of the chiral fluid, the IC fluid will be incommensurate in both directions, 
in a narrow intermediate region beyond the chiral melting line before becoming a 
SIC fluid. 
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The XH phase has implications for the C to SIC phase transition, which is 
generally believed to be a Pokrovsky-Talapov (PT) transition [4]. Our calculation 
opens the possibility of a new type of C to SIC transition. Strictly speaking, in our 
phase diagram the C and SIC phases are not even adjoining. In analogy to Villain’s 
theory for isotropic systems, our generalization predicts the presence of an inter- 
mediate XH phase between the C and SIC solids extending to zero temperature. 
However the XH phase is extremely narrow and probably will not survive more 
detailed quantitative studies; except, of course, when the intersection energy is 
negative. Still, breathing entropy challenges the PT nature of the C to SIC transi- 
tion. The XH network is a dislocation network from the point of view of the SIC 
phase (see Sect. 2). The (almost) stability of the XH phase indicates a softness of the 
SIC phase with respect to the formation of local clusters of XH-type dislocation 
networks. Breathing entropy compensates for the core energy of the dislocations 
even when this energy is large. Therefore, compared to the domain wall density, the 
dislocation density may become large on approach of the C-SIC transition. The PT 
theory assumes a low dislocation density. In the language of renormalization 
theory, the PT fixed point is located at zero dislocation density and its crossover 
exponent in the direction of finite dislocation density is irrelevant. The breathing 
entropy argument indicates that there is possibly a crossover to a new type of 
CSIC transition fixed point at large dislocation density. 

To summarize our results: The tilt energy of domain walls causes the breathing 
entropy to be small compared to the meander entropy in anisotropic HIC phases. 
Therefore those HIC phases are not as stable as the ones in isotropic systems where 
the breathing entropy is much more powerful. However, the OH and XH networks 
have possible implications for the nature of the chiral melting and the PT transition 
in uniaxial systems. This warrants that our qualitative theory presented here be 
followed up by detailed (numerical) quantitative calculations. 

The outline of this paper is as follows. In Section 2, we describe the energetics 
and the topological aspects of domain walls, introduce the OH and XH types of 
domain wall networks, and discuss the chiral 3-state Potts model. In Section 3, we 
generalize and analyze Villain’s theory for isotropic HIC phases to anistropic OH- 
type networks, assuming that the walls are rigid. In Section 4, we include meander 
entropy into the description of the OH network. In Section 5, we repeat the entire 
procedure for the XH phase, and present a comparison with the isotropic case. 

2. TOPOLOGICAL RULES AND ENERGETICS OF DOMAIN WALL NETWORKS 

In this section we describe the topological and energetical aspects of domain 
walls, discuss the two types of honeycomb domain wall networks, comment on the 
relation between domain wall theories and experimental realizations of IC phases 
in, e.g., physisorbed monolayers, and discuss the relationship with the chiral 3-state 
Potts model. 

A weakly IC monolayer is described by domains, where the monolayer is com- 
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FIG. 2. Commensurate (3 x 1) structure. D, and D, denote the displacement vectors of the 

superheavy and the heavy walls, respectively, while b, and b, are the lattice vectors of the commensurate 
monolayer. 

mensurate with the substrate periodicity, separated by domain walls. The domain 
walls carry the excess monolayer particles. Domain wall theories describe the 
monolayer by the excitations of the domain walls. All fluctuations at length scales 
smaller than the domain wall width are integrated out, and incorporated in the 
energy parameters of the walls. Several types of domain walls are possible, 
depending on the symmetry and the degeneracy of the nearby C ground states. 
Besides its width I,, each type of domain wall is characterized by its direction, 
denoted by a unit vector d orthogonal to the wall, and its displacement vector 
D(i,j). Only the energetically most favorable walls need to be considered. In the 
uniaxial systems discussed here the energetically most favorable walls follow the 
uniaxial direction or are only slightly tilted relative to that direction. 

The displacement vector D(tj) = -D(j, i) of the wall is a lattice vector of the 
substrate. It measures the displacement of the atoms in domainj on one side of the 
wall with respect to the atoms in domain i across the wall, see e.g., Fig. 2. At each 
point where walls meet and/or transform into different types the total sum of dis- 
placement vectors must be zero modulo a lattice vector bi of the C monolayer. For 
example, at the intersection points in Fig. 3a, a vertical wall V splits into a right- 
tilting wall R and a left-tilting wall L such that 

DV(i,j)+D,(j,k)+D,(k, i)=O(mod b;). (1) 

(0) (b) (c) 

FIG. 3. Transformations between domain wall types: (a) intersections in OH networks, (b) domain 
wall pair creations and annihilations, and (c) intersections in XH networks, 
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When the contour integral is not equal to zero, but equal to a C monolayer lattice 
vector bi, the intersection is called a dislocation. Dislocation-intersections will, in 
general, induce more local strain and therefore have a larger intersection energy, 
because they create extra rows of monolayer atoms. This does not imply, however, 
that dislocation networks are less favorable, because also the wall energy must be 
taken into account. 

The energy per unit length of a wall of type A is composed of two contributions: 
the elastic energy C, due to the compression of the monolayer inside the wall and 
the adsorption energy ~1~ of the excess particles: 

EA=CA((iA,DA,Iw.r)-~A(DA,a,~), 

pA = n p@‘D, . ci A, 

where p(P) is the adsorption energy per particle and n the monolayer density of the 
C ground state. Notice that the energy changes sign when ,n(P) increases. The CI 
transition is driven by the type of walls whose energy becomes negative first. Only 
those walls and other nearby low-cost walls need to be considered. 

Consider first the network of Fig. la. Assume that the vertical walls are of the 
type labelled A. To form the network, the tilted walls must be of a different type. 
The displacement vectors of the tilted walls are prescribed by (1). If the intersection 
in Fig. la are not dislocations, i.e, if the contour integral (1) is equal to zero, and if 
the left and the right tilting walls are of the same type, labeled B, then it follows 
from (1) and (2) that pB=pA/2. This is obviously correct in the limit of zero tilt 
where the honeycombs are very narrow. It is also correct at finite tilt angles if one 
measures the wall length by its projection along the uniaxial directions, as we will 
do. The energies of these types of walls can be expanded in the tilt angle, 

E,, (0) = C,, + +C’: tan’(e) - 2~, 

E,(H)=C,+$Cgtan2(8)-p. 
(3) 

The subscript B on pB = ,uA/2 is dropped for convenience. The compression energies 
C, and Cg, and the tilt energies Ci and Cg must be considered to be temperature 
dependent. Equation (3) exhibits the proper 8 dependence: at finite temperatures 
the tilt energy is not linear in the tilt angle, as Itan(8)1, but quadratic. This is due to 
meander entropy, and explained in Section 4. The A-type walls are more favorable 
than the B-type walls if C,4 < 2C,. 

Consider the networks shown in Figs. lbd. Because of the nature of the A and B 
walls specified in (3) these are dislocation networks. The network in Fig. la will be 
called OH1 (O-shaped). The dislocation network in Fig. lb, where the roles of the 
A and B walls are reversed, will be referred to as OH2. Notice that OH2 is only 
allowed if 2D, - D, is equal to a lattice vector of the C monolayer. 

At first sight it appears that the X-shaped honeycomb networks in Figs. led can 
be ignored, because the angles at the intersections are very sharp and must lead to 
large intersection energies. However, these networks are constructed from one type 
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of walls only; in contrast to the OH-type networks all wall energies at zero tilt are 
equal. This aspect will turn out to be more important than the magnitude of the 
intersection energies. The dislocation network in Fig. lc will be called XHl and the 
one of Fig. ld, XH2. Notice that XNl (resp. XH2) is only allowed if D, (resp. DB) 
is equal to 4 of a lattice vector of the C monolayer bi or a multiple of that, see (1). 

Each type of the intersections, see Fig. 3, has a core energy associated with it. The 
intersection energies in our four networks will be denoted I,,, lo*, I,,, and IxZ. 

It is useful to keep in mind a simple example like a 3 x 1 system, where the 
monolayer has three C ground states, and where the A-type walls are usually called 
the superheavy walls and the B-type walls the heavy walls [12], with the dis- 
placement vectors pointing in the direction orthogonal to the uniaxial direction and 
with D, = D,/2 = b,/3 (see Fig. 2). All four networks of Fig. 1 are allowed in this 
and other uniaxial systems with three C ground states, like H, 0, or H,O on 
Ni( 110) and H on Fe( 110) [26629]. 

However the results of this paper apply to a wider class of adsorbed monolayers. 
In an attempt to describe an actual experimental system by the domain wall theory, 
and to check whether one or more HIC phases are allowed, one has to follow the 
following steps. First, the nearby C ground state with respect to which the domain 
walls are to be defined has to be identified. Next, using the symmetries and 
degeneracy of this C ground state, all possible types of domain walls can be charac- 
terized. Then, one must hope that the available knowledge about the microscopic 
interactions is sufficient to identify the energetically most favorable types of domain 
walls. It is also important to determine the typical domain wall width, because that 
sets the experimental density interval where the results of the domain wali theory 
might apply. Finally, it can be checked whether these walls obey the topological 
rules outlined above. 

For example, in systems like N,, CO, ortho-H,, or ethane physisorbed on 
graphite, the isotropy of the substrate is spontaneously broken by the orientational 
ordering of the molecular axes of the monolayer molecules [20, 21, 24,251. In N, 
on graphite [ZO, 211 the C positional order is the well known fix fi structure, 
but the degeneracy of the C ground state is larger than three and the system 
behaves uniaxial, because of the herringbone type of the orientational order. These 
systems have more than two types of walls, including ones that obey the topological 
rules for OH and/or XH phases. However, it is not easy to make definite predic- 
tions, because especially for these systems it is difficult to estimate the wall energies 
accurately. 

Intermediate HIC phases cannot be realized in systems with only two degenerate 
ground states, e.g., Xe on Cu( 110) [30], the ANNNI model [a], because it takes at 
least three colors to color a HIC network. Such monolayers can still become incom- 
mensurate in both directions, but only at monolayer densities which are high 
relative to the domain wall width, i.e., where the monolayer floats and the domain 
wall picture does not apply. 

This study also addresses the chiral 3-state Potts model. This model was 
introduced by Ostlund [ 1 l] and has been studied extensively in recent years 
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[ 12-181. It serves as a prototype model to study chiral melting [ 171, the possibility 
of a direct melting of the C phase into an IC fluid in the presence of two types of 
domain walls. The chiral 3-state Potts model describes a system with three C 
ground states. Its two types of walls are known as clockwise and anti-clockwise 
walls, and are associated with the superheavy and heavy walls in a monolayer with 
a (3 x 1) C ground state, and with our A and B walls. Consider a rectangular lattice 
with lattice constants al and a,, . Choose a, and a,, of the same order of magnitude 
as the domain wall width. Each cell contains many monolayer atoms. A Potts 
variable 4 = 0, + 2n/3 is assigned to each a, x a,, cell; to represent the three possible 
C positions of the monolayer inside the cell. In the conventional version of the 
chiral 3-state Potts model, only nearest neighbor interactions are taken into 
account: 

H = - c [J W4, + l,m - 4n.m - $A I+ J’ cos(~wn + I- hw)l~ (4) 
<n.m> 

In this model description the domain walls follow the bonds of the lattice. The wall 
energies of the A and B walls at zero tilt angle are given as 

EA (0) = J[cos(; nA) - cos(j TC( I -A)], 

EB(0) =J[cos(j nA) - cos($ TC( 1 + d)]. 
(5) 

The chirality parameter A plays the role of the chemical potential. The non-chiral 
Potts model is located at A = 0, the energy of the A walls changes sign at A = 4, and 
the energy of the B walls at A = -f. Compare this with (3) where the wall energies 
become equal at p = C, - Cg, the energy of the A walls changes sign at p = C,/2 
and that of the B walls at p = Cg. Notice the periodicity in A, which is absent in 
(3). Because the model has only nearest neighbor interactions, the intersection 
energies I, and I, are equal to zero. Another special aspect of the conventional 
chiral Potts model is that the tilt energies are equal, CL = Cg. 

Figure 4 shows the phase diagram of the chiral 3-state Potts model as it is con- 
ventionally drawn [ 13, 17, 181. One of the unresolved issues is the presence and 
nature of a so-called chiral melting transition along the line between the Potts 
critical point P (where the wall energies are equal, E, (0) = EB(0)) and the so-called 
Lifshitz point L. Below L one expects a direct transition between the C and SIC 
solid phases described by the Pokrovsky-Talapov theory [4]. The SIC phase con- 
tains only A walls (or only B walls, depending on which are the energetically most 
favorable walls). The melting of the SIC phase is believed to be Kosterlitz-Thouless 
like. The Lifshitz point is the boundary between the regions where the system 
realizes that there are two types of wall, and where it ignores the unfavorable type. 
This is the most likely structure of the phase diagram as concluded from earlier 
studies; but there are a lot of question marks. There is strong numerical evidence 
for the existence of the Lifshitz point [13, 14, 181, but also evidence that P and L 
merge in the limit of large dislocation core energy [15, 161. Our study, although 
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FIG. 4. Conventional phase diagram for the 3-state chiral Potts model. P is the nonchiral Potts 
melting point and L the Lifshitz point. 

phenomelogical in nature, gives new insight into this problem, because it 
approaches this model from a new perspective. Earlier studies did not address the 
possibility of the HIC phases in uniaxial systems. 

3. OH-TYPE HONEYCOMB NETWORKS OF RIGID DOMAIN WALLS 

In this section Villain’s theory [l, 51 for isotropic HIC phases is generalized to 
uniaxial systems and applied to the OH-type phases. The walls are assumed to be 
rigid. In Section 4 their meander entropy is included. The XH-phases are ignored 
momentarily. They are discussed in Section 5. Strictly speaking the results of this 
section only apply to very low temperatures, because only the breathing entropy is 
accounted for. Other types of entropy due to, e.g., meander excitations, imperfec- 
tions in the network (dislocations), and local fluctuations in the angles of the 
honeycombs are not included explicitly. To some extent these other types of 
entropies only renormalize the wall energy parameters C, and C:, see (3), and also 
the intersection energies I,. Instead of treating these parameters as constants, one 
might introduce ad hoc temperature dependencies to represent those other 
entropies, and deform the phase diagrams accordingly. In Section 4, meander 
entropy is incorporated explicitly, and indeed its major effect is to renormalize the 
wall energy parameters (meander entropy is proportional to the wall length). 
However some of those entropies introduce phase transitions; dislocations lead to 
(IC) fluids. Fluid phases are not established in our phase diagrams, because dis- 
locations are not treated explicitly. 

The central question of this section is whether an intermediate OH phase can be 
realized in uniaxial systems at the onset of incommensurability between the C and 
SIC solid; whether the breathing entropy is able to compensate the increase in 
energy needed to transform a striped structure into a OH network like in isotropic 
systems. Breathing entropy competes with the energy needed to transform a piece of 
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vertical wall into two vertical walls of the tilted type, the energy needed to tilt these 
walls, and the intersection energy. 

In hexagonal domain wall networks, breathing deformations of the hexagons 
conserve the total wall length in each of the three directions V, L, and R (see 
Fig. 5). When the honeycombs are large enough such that the wall-wall interactions 
can be neglected, i.e., that the only energies in the problem are the wall energy per 
unit length and the intersection energy, then the breathing excitations conserve the 
total energy. This configurational degeneracy is called breathing entropy [S]. 
Figure 5 shows that breathing entropy is not special to isotropic networks, where 
the three inside angles of the honeycombs, Ov, tIR, and 8, are equal. It is also 
present when these angles are different. 

For isotropic honeycombs, Villain [S] showed that all honeycomb network con- 
figurations can be generated by breathing semi-regular networks, where all 
honeycombs are identical, see Fig. 6. Each semi-regular network can be labeled by 
the lengths of the three honeycomb sides and three inside angles. The partition 
function reduces to a sum over all possible semi-regular networks, weighted by the 
number of irregular network configurations associated with each semi-regular 
network. Villain constructed an approximation for this weight function. In Appen- 
dix A we generalize his result to uniaxial systems where the honeycombs are very 
anisotropic with small top angle 0,.. 

i 

4 

\ 

(a) (b) 

FIG. 5. Breathing modes in OH and XH networks. 
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(ai (bi 

FIG. 6. OH and XH semi-regular honeycomb networks. 

To count the breathing modes a cutoff must be introduced. In Section 4 the 
meander entropy of the walls is included by assuming that the walls follow locally 
the bonds of a cutoff lattice. In this section the walls are still rigid, but can rotate by 
continuous angles. We introduce the cutoff by requiring that the intersection points 
of the honeycombs coincide with lattice points of the cutoff lattice. This lattice 
should not be confused with that of the substrate periodicity. Its lattice constants 
are comparable with the domain wall width, in physisorption typically of the order 
of 2&30 8, and much larger than the substrate periodicity. The symmetries of the 
monolayer and substrate determine the choice of the cutoff lattice. For example, for 
Kr on graphite it would be honeycomb or triangular, and for H on Fe( 110) rec- 
tangular. In uniaxial systems it can always be chosen to be rectangular; e.g., in N, 
on graphite at temperatures below its orientational melting transition (at higher 
temperatures the cutoff lattice must be triangular or honeycomb). For convenience, 
we choose a rectangular cutoff lattice and label its lattice constants in the directions 
orthogonal and parallel to the uniaxial direction by a, and a,,. 

The approximation for the breathing entropy per semi-regular honeycomb 
network configuration is obtained in Appendix A. For convenience we will assume 
that the R and L walls are of the same type. Then the network has reflection sym- 
metry, i.e., I, = I, ( = I,) and all angles are determined by the tilt angle 9 as: 8,= 28 
and OR = OL = z - 6. See Fig. 6 for the definitions of the angles and lengths of the 
honeycombs. Then 

s breath = 

where g is a constant of order of unity, and v is the total number of honeycombs, 

A 
V=21,sin(t9)[IV+I,cos(B)]’ 

with A the total substrate area. 
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Consider the OH1 network of Fig. la. The free energy per unit area of a semi- 
regular network with sides I, and I,, and tilt angle 0 is given as 

J‘(lT, Iv, 0) = 
1 

21,sin(~)[1,+1,cos(8)] 
2Z,, + l,E, + 2E,(8) I,cos(Q) 

where I,, is the intersection energy of the walls in the OH1 network. The tilt 
angle 0 is treated as an order parameter, like the wall lengths I, and I,. This implies 
that local fluctuations in 8 are neglected. The values of the three order parameters 
are determined by minimizing the free energy. It is convenient to redefine them as 

ST= I,sin(8), 

S, = I, tan(B), 

cp = tan(e), 

and to redefine the coupling constants as 

a=E,(0)/kBT=(C,-2p)/k,T, 

b/2=E,(O)lk,T=(C,-~L)lk,T, 

c = C;/k,T, 

d=2Z,,/k,T+ln(ga,), 

(9) 

(10) 

see (3) and (5). If in addition we measure the free energy densityf in units of k, T, 
then (8) simplifies to 

f(&&dP)=2s (;+s )[ 
T  T  V 

aSv/y,+bSJy,+crpS,+d+ln(~+$)]. (11) 

This is a valid approximation only when ST and S, are large with respect to the 
lattice cutoff a,. The free energy of the OH2 phase is also given by (ll), but with 
different values of the coupling constants 

b/2 = E, (0)/k, T = (C, - 2p))lk, T, 
(12) 

c = C;Jk, T, 

d=2Z,,/k,T+ln(ga.). 



HONEYCOMB DOMAIN WALL NETWORKS 431 

In the chiral 3-state Potts model, see (4) and (5), the tilt energies of the OH1 and 
OH2 phases are equal, Cl = CL, and the intersection energies are equal to zero, 
I,,=I,*=O. 

Typical phase diagrams are shown in Fig. 7. In Fig. 7a the A walls are more 
favorable than the B walls by choosing C, < 2C,, see (3); in Fig. 7b the B walls are 
more favorable; and Fig. 7c shows the phase diagram in the chiral 3-state Potts 
model language. An intermediate OH phase is indeed present between the C and 
SIC phases, but, contrary to the isotropic case, the OH phase does not extend all 
the way down to zero temperature, but only exists above a multicritical point L. 

At the point L in Fig. 7a the SIC and C phases coexist with the OH1 phase; not 
with the OH2 phase. The fact that the A walls are energetically more favorable than 
the B walls (C, < 2C,) does not imply that the OH1 phase must appear at L. The 
OH2 phase would appear, if the ratio .Y = S,/S,., which characterizes the ratio 

l ’ 

40 
OH2 

lb) OHI 

c L 
0 

-05 
3 

05 

(cl 
OH2 

OHI 

<’ P 
IO,- 

lmam!z3 

s I$ C SIC* 

L L 

0 -05 

2 
05 

FIG. 7. Phase diagram in the rigid domain wall approximation: (a) for C, < 2CB, (b) for C, > 2C,, 
and (c) for the 3-state chiral Potts model. SIC, is the striped incommensurate phase with A-type domain 
walls and SIC, with B-type domain walls. Temperatures and chemical potentials are shown in the units 
of E’ = &/[(2eg)*(2CB- C,4)] and p’= (p- C,/2)(2CB- C,) in (a); E’ = &/[(2eg)*(CA -2C,)] and 
p’ = (p - C,/2)/(C, - 2C,) in (b); and E’ = &/[J(2eg)‘] in (c). In (a) and (b) C” = Ci and I,, = IO2 = 0. 
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between the tilted and vertical wall lengths, is larger than t. In the rigid wall 
approximation x is always smaller than t at L, but in Section 4 where meander 
entropy is included, x will become larger than 4 and the OH2 phase will appear 
instead of the OH1 phase. 

Within this approximation, the droplet excitations are absent in the C solid 
phase, and its free energy fc = 0. The SIC phase is not well represented since mean- 
der excitations are not included yet. The SIC phase is close-packed, with a wall 
along every vertical bond, and free energy fslc = a. The OH phases correspond to 
non-trivial minima of the free energy with respect to the three order parameter 
variables S,, S,., and qn: 

ip/s,. = a-h + up’, 

cp,s =(3ccp2-bWb+cd 
r (2a-b+cq2) ’ 

ZccpS,-+ d+ ln(l/S,,+ l/S,) =O, 

and with free energy 

(13a) 

(13b) 

These equations are solved numerically for temperature T and chemical potential p 
or chirality A, using (10) and ( 12). 

At the C-OH phase boundary the free energy of the OH phases is equal to zero. 
This determines the phase boundary and the values of the order parameters 

(14) 
1 

c=cps,’ 

d= -1 -ln(l/S,+ l/S,,). 

The transition is first-order, like in the isotropic case. The jumps in the order 
parameters and the location of the C-OH phase boundary can be rewritten more 
explicitly as 

2bx’+ax-a=0 (x = s?-/S,), 

Sv= (2ac( 1 +x))-‘I’, 

cp = (2cxs~)P’, (15) 

ac=2(1 +X)3 
exp[ - 2 - 2d]. 
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The phase boundaries of the SIC phase are not well represented, because of the 
close packed nature of this phase in this approximation. The C-SIC phase trans- 
ition at a = 0 is first order, but will become second-order after meander entropy is 
included, in section 4. The HIC-SIC transition is also first order, and will remain so 
after meander fluctuations are included. 

The presence of the multicritical point L is the most important aspect of this 
calculation. L is located at 

a = 0, 

4hc = exp[ - 2 - 2d]. 
(16) 

Near L the OH phase looks very striped like; as illustrated by the jump in the order 
parameters along the C-OH phase bounary in the vicinity of L, 

S,.- (2ac)-‘“, 

ST-- (4hc) ‘i2, 

cp - (b/cp2. 

(17) 

On approach of L the top angle of the honeycombs remains finite, and also the 
width 2S, of the honeycombs remains finite, but the vertical wall length diverges. 

As functions of temperature and chemical potential, i.e., in Fig. 7, the multicritical 
point L where the C, SIC, and OH1 phases meet is located at 

(k,TJ’ c,=-----=(2eg)‘exp s 
a2, Cg [ 1 w,- C,). 

B L 

(18) 

The quantity at the left-hand side of this equation is a suitable measure of tem- 
perature, and will be called E. In the chiral 3-state Potts model L is located at A = 4 
and .sL = 3J(2eg)*. As expected the multicritical temperature increases with the tilt 
energy Cg. The parameter (2eg)* characterizes the strength of the breathing 
entropy; later, in Section 4, breathing entropy will turn out to be very weak in 
uniaxial systems, expecially with respect to meander entropy. The multicritical tem- 
perature is proportional to the elastic energy needed to transform one A wall into 
two B walls. Recall that C, = 2C, is precisely the border line case where the A and 
B walls are energetically equally favorable, see (3). 

Breathing entropy has to compete with three types of energy: the intersection 
energy, the elastic energy of the walls, and the tilt energy. The intersection energy 
I, only renormalizes the strength (2eg)* of the breathing entropy, similar to the 
isotropic case where breathing stabilizes an intermediate HIC phase between the C 
solid and SIC solid at all finite temperatures, even if the intersection energy is 
positive and large. The tilt energy C;5 sets the temperature scale E. The difference in 
compression energies 2C, - C, determines the threshold temperature below which 
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the OH phase cannot exist. Breathing entropy is not able to compensate the energy 
needed to split one A wall into two vertical B walls below the multicritical point L. 
This is one of the intrinsic differences between uniaxial and isotropic networks. OH 
uniaxial networks contain two different types of walls, A and B, whose energies (at 
zero tilt angle) do not change sign simultaneously as a function of the chemical 
potential p, see (3). Isotropic networks contain only one type of wall, the walls in 
the three easy directions are all of the same type, and therefore L is located at zero 
temperature. 

This reason for the absence of the OH phase at very low temperatures can be cir- 
cumvented. It is possible to construct a different honeycomb network, which still 
benefits from breathing entropy, but is built with only one type of wall. Such a 
phase could become stable at very low temperatures. The XH networks of 
Figs. Ic-d have that property and are discussed in Section 5. 

How does the location of the multicritical point L relate to other characteristic 
temperatures of the system? The multicritical point P is associated with the C 
melting point in the absence of chirality. In the chiral Potts model it is located at 
A =O. P is the point where the C, OHl, and OH2 phases meet. Within our 
approximation the C solid does not melt; there are no dislocations; but the 
coexistence line between the OH1 and OH2 phases can be viewed as representing 
the C fluid phase, because there chirality cancels out, and the C fluid will appear. 
Within our approximation, the C solid “melts” at P, because the gain in breathing 
entropy becomes larger than the loss in energy needed to create domain walls and 
intersections. 

When the intersection energies I,, and I,,, and also the tilt energies C: and C’k 
are equal, e.g., in the chiral 3-state Potts model, P is the point along the C-OH1 
coexistence line where a = b/2, i.e., 

b=2a, 
(19) 

a4ac = exp [ - 2 - 24, 

where c( = (1 + x)~/(~.x’), with x = S,/SV = (fi - 1)/8, see (15), and tl= 8.82. This 
point will be labeled p, to distinguish it from P in the more general case where the 
two points do not coincide. The location of P in terms of T and p follows from 
(10): 

PP=CA-CB, 

W, Tp)’ 4101 ep=----=c1(2eg)‘exp k~ (2CB-C,). 
a: Ci [ 1 B P 

(20) 

E is the same measure for temperature as in (18). In the chiral Potts model P is 
located at A = 0, .sp = 3Ju(2eg)‘/2. 

&p and E[. differ by a factor of cx; the minimum temperature .sL where the OH 
phase exists is indeed linked to the C melting temperature. Therefore we must pay 
attention to the possibility that the OH network does not exist as a solid phase, but 
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only as an OH fluid. If .sL and sp are close, dislocations will likely melt the OH 
phase into an IC fluid. In the next section we show that this is almost certainly the 
case when meander entropy is included in the description of the OH phases. It turns 
out that around L and P meander entropy is very much larger than breathing 
entropy, by a factor of (2eg)2 - 100, and that therefore cL and E, are much closer to 
each other than the factor CI. 

It is useful to compare the phase diagram of Fig. 7c with the one suggested for 
the chiral 3-state Potts model, Fig. 4. It is tempting to associate our multicritical 
point L with the Lifshitz point. Both points act as boundaries between regions 
where the system uses both types of wall and where it only realizes one type. If this 
identification is correct, then our calculation implies that at the chiral melting 
transition the C solid melts into an IC fluid which is not striped-like, but OH-like. 

The competition between the C fluid and the chiral fluid determines how the C 
solid melts at small chirality. The breathing entropy associated with a local OH 
network might be the essential type of entropy which stabilizes the chiral fluid with 
respect to a SIC and C fluid. Consider a SIC phase which is a mixture of the two 
types of wall. Since one of the walls is still energetically more favorable, this mixture 
can only be lower in free energy with respect to a SIC phase containing only 
cheaper walls, by means of the entropy associated with transformations between the 
two wall types. There are three types of transformation mechanisms: intersections 
like in the OH phase (Fig. 3a), pair creation/annihilations (Fig. 3b), and intersec- 
tions like in the XH phase (Fig. 3~). If the latter two do not destroy the character of 
the OH phase near the chiral melting transition, the IC fluid at the chiral melting 
will be an OH-type fluid. More detailed calculations including all three wall trans- 
formations mechanisms must be performed to clarify this point. 

4. MEANDER EXCITATIONS IN OH-PHASES 

In the previous section only the breathing entropy is accounted for. Breathing is 
the dominant type of entropy at very low temperatures, because it concerns modes 
which do not increase the energy of the honeycomb network. However, the tem- 
perature scale is set by the value of the tilt energy C’l;l, which, as shown below, is 
strongly temperature dependent itself, and dominated by meander entropy. 
Moreover, it turned out that OH phases are not stable at low temperatures. At 
higher temperatures it is essential to include the other types of entropy, e.g., mean- 
der entropy, local fluctuations in the position of the intersection points and size of 
the top angles, and imperfections in the network (dislocations). Within the 
approach of this paper it is not possible to incorporate all of them. However it is 
possible to account for meander excitations of domain walls. 

Consider the rectangular cutoff lattice. The intersection points of the honeycombs 
are assumed to coincide with the lattice points of the cutoff lattice. In Section 3, the 
domain walls were assumed to be rigid rods joining these vertices. Now the domain 

595/172/Z-13 
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walls will be allowed to meander between their end points; they can choose their 
own paths along the bonds of the cutoff lattice between the intersection points, see 
Fig. 8. The intersection points themselves are still assumed to form a rigid 
honeycomb network; they can breath, but their positions are not allowed to fluc- 
tuate otherwise. Also the top angles of the honeycombs are still rigid, i.e., not 
allowed to fluctuate locally. 

As a first step to introduce meander entropy, the energy of each wall (3) is 
replaced by the free energy of such a domain wall between two fixed (but far apart) 
end points in the absence of any other wall. This is again similar to Villain’s 
calculation for the isotropic case [S]. The free energy associated with macroscopic 
tilts of the walls is obtained by choosing non-vertical end points (see Fig. 8). This is 
done in Appendix B. The result is 

where E, (0) is the energy of a wall of type A in the uniaxial direction at zero tilt 
angle 8=0, tan 8= y(aJa,,), and t, = 2 exp[ -E,a,/k,T] is the meander 
probability with E, the energy of a wall of type A along a bond of the cutoff lattice 
orthogonal to the uniaxial direction. The logarithmic correction due to the finite 
length of the domain walls is neglected to keep the discussion simple (see (B6)). 
Otherwise it would entangle the meander and breathing entropies and make it 
impossible to factor out the breathing entropy in a simple form as in Section 3. 

in,m) 
A 

FIG. 8. Macroscopic tilt of meandering domain walls on a rectangular cutoff lattice with lattice con- 
stants uI and a,, 
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In the limit where the tilt is small with respect to the meander probability, y/t < 1 
(21) can be expanded as 

(22) 

Then the free energy of the OH phases has still exactly the same functional form as 
in the rigid wall case (11) but with new renormalized parameters. For the OH1 
phase the p and T dependences of a, h, c, and d change into 

a = EA (O)/k,T- t,la,, = tC,4 - %)lk,T- t,,lq, 

bP=EdO)lk,T- tdq = tC,-p)lkiT- t,dq,, 

c=q/(alts), 
123) 

d= 2Z,,/k,T+ ln(g al). 

The expressions for the parameters of the OH2 phase are similar. 
Numerical calculation using (21) instead of (22) confirm that y/t remains small at 

all temperatures. Notice that at zero temperature and/or y/t 9 1 the energy needed 
to tilt the wall becomes linear as Itan instead of quadratic. It is easy to check in 
Section 3, that a linear tilt energy would lead to a total absence of the HIC phases. 
The quadratic dependence on the tilt is essential for stabilizing the HIC phases. 
Therefore it is not surprising that y/t remains much smaller than 1 at all tem- 
peratures. 

This approximation for the meander entropy is not adequate however. It neglects 
the reduction in meander entropy caused by the presence of the other walls. Since 
domain walls are not allowed to cross each other, they reduce the freedom of each 
other to meander. This crowding effect is essential for the nature of the 
Pokrovsky-Tapalov (PT) transition between the C and SIC phases. To describe the 
SIC phases properly this crowding effect must be included in the free energies of the 
SIC phases, and then, in order to obtain a consistent description of the HIC-SIC 
boundaries, it must be included in the free energies of the HIC phases as well. 

The top angle of the honeycombs is very small, and the local surroundings of 
each wall are very striped-like. Therefore, one way to incorporate crowding, is to 
treat the wall as if it is a part of a SIC phase. The free energy of a SIC phase of 
meandering walls is well known and easily calculated (e.g., see [ 1 I). 

fSICZ (24) 

where dA is the density of walls of type A. For convenience the so-called tight 
binding approximation is used, where each individual wall excitation along the a, 
bonds is not allowed to be longer than one unit a, of the cutoff lattice. This is a 
valid approximation for highly uniaxial systems. 
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Equation (24) leads to the well-known PT transition between SIC and C solid 
phases. This is a second-order transition, i.e., d, vanishes continuously. The 
crowding effect does not change the locations of C-SIC phase boundaries; the 
transition between the SIC phase with A walls and the C phase still takes place at 
a = 0. 

To introduce crowding into the description of the HIC phase, the wall-free 
energy (22) is replaced by the free energy of a wall in a SIC phase at a 
corresponding density, 

E, (0) t, sin(d, xaL) .fm=,,- y* 

R dAnaLa,, +zr,. (25) 

For simplicity only the part associated with zero tilt is modified. The justification 
for this decoupling of the tilt energy and the crowding effect is that the tilt remains 
small. For the vertical walls in the OH network, the density d,. is chosen to be 
equal to the inverse of the average width of the honeycombs, d, = l/ZS.. For the 
tilted walls, the density is chosen to be equal to d,= l/S,, because on the average 
the distance between the tilted walls is twice as large. Notice that (25) reduces to 
(22) in the limit of zero wall density. 

The free energy per unit area for the OH1 network is now given as 

f(STJ,dP)=2S (sq+s ,)[ aS,,/cp+hS,/cp+ccpS,+d+In 
T  T  k 

t,Sv +- ( 
1 _ sin(71aL/2ST) 

w II naL/2ST 

)+25 1 --;;y]. (26) 

The parameters a, h, c, and dare defined in (23). It should be stressed that the only 
purpose of (26) is to describe the OH1 and OH2 phases qualitatively, consistent 
with the simplest description (24) of SIC phases and with the correct order of 
magnitude of meander entropy versus breathing entropy. 

Figure 9 shows how Fig. 7c changes due to the meander entropy and the 
crowding effect. The OH1 and OH2 phases virtually disappear! They are only 
realized in an extremely small region around the “Potts” multicritical point P, 
shown in Figs. 9bc. The underlying reason for this collapse is that meander 
entropy is much larger than the breathing entropy at temperatures close to P and 
L. Meander entropy is (2eg)’ N 100 times larger. Therefore breathing has only a 
minor effect on a phase diagram where HIC phases are ignored. 

The OH1 and OH2 phases have flipped in position with respect to Fig. 7c. With 
crowding the OH1 phase appears to the left of the OH2 phase. As explained in Sec- 
tion 3, if the A walls are energetically more favorable than the B walls, one expects 
to find an OH1 phase with x <t, or an OH2 phase with x > 4; x characterizes the 
ratio between the tilted and vertical wall lengths. Crowding introduces an effective 
repulsion between the walls and makes the OH2 phase with x > 4 favorable. 
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1 

FIG. 9. Phase diagram of the chiral 3-state Potts model in the approximation with meandering 
domain walls. .s” = E/J is used as the temperature scale and R is chosen to be equal to one. Details around 
the Potts melting point P are shown in (b) and (c). 

The wall free energies are now temperature dependent, via the meander 
probabilities 1, and t,, see (21))(23). An isolated wall at zero tilt of type A (resp. 
type B) would melt, i.e., its surface tension as estimated by (21) becomes negative, 
at a = 0 (resp. b = 0). It is useful to choose E = t,ks T/a,, as temperature variable. 
This is the same choice as in Section 3, because CB= k,T~,,/(a,)~t,, see (lo), (18), 
and (23). In Fig. 7 the lines a =O, b=O, and a = b/2 are parallel, but now they 
intersect (except for the special case t, = 2t,). The intersection point a = b/2 = 0 is 
called M, see Fig. 9c. It gives an estimate for the non-chiral Potts melting tem- 
perature when breathing entropy is neglected; sM = (2C, - C,)/(2 - tA/te). 
Similarly E,,, = 3J/2 in the chiral Potts model. Notice that E, has the correct order 
of magnitude compared to the exactly known location of the critical point in the 
non-chiral Potts model, i.e., E = J in the anistropy limit [ 131. Notice that P and L, 
are extremely close to M, see Fig. 9c. Compare this with the location of L and P in 
Section 3, (18) and (20). There E,, and sL are predicted to be larger than here by a 
factor (2eg)’ - 100. The factor (2eg)’ measures the ratio between meander and 
breathing entropies. The multicritical point P in Fig. 9 is an estimate of the Potts 
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non-chiral melting temperature including both meander and breathing entropy. 
Since breathing entropy is so small, P is located just below M. 

This does not yet explain why L is also located very close to M. Recall that L is 
the multicritical point where the C, SIC, and OH1 phases meet. Also realize that 
(16) implies that L is the point along the line a =0 (the line where the surface ten- 
sion of the vertical walls vanishes), where the ratio between the temperature and the 
surface tension of two tilted walls, cJbksT, becomes larger than (2eg)2 (apart from 
a renormalization due to the intersection energy). Only beyond this threshold, the 
breathing entropy compensates for the free energy needed to split vertical walls into 
tilted walls. Since the lines a = 0 and b = 0 approach point M linearly with different 
slopes, see (23), L must be located extremely close to M. 

To illustrate this point further, ignore the crowding effect momentarily. Then (11) 
and (23) determine the free energy of the OH phases. The phase diagram would be 
the same as in Fig. 7, but highly deformed due to the renormalization of the 
parameters by meander entropy, Consider the triangle formed by the points P, L, 
and M. L is still given by (16), and P by (19). In the p versus T phase diagram 
M, P, and L are now located at 

P,,, = CA - CB - (tA - fB) kB T,dq~ 

2~~=C~-f~k~T,lq, 

~Lp=CA-Cs-(fA-tB)ksTplaI,, (27) 

- 4f&ka T  

rx(2eg)’ ’ 

with IX = 1 at L, a = 8.82 at P (as in Section 3), and a = cc at M. Compare this with 
( 18) and (20). The basic change is the appearance of the meander term 2 - t,/t, on 
the right-hand side. This term dominates (except for the special case t, = 2t,), 
because the constant (2eg)’ in the breathing term is much larger than one. It 
illustrates explicitly that the ratio between meander and breathing entropy is (2eg)‘. 
Therefore the CY dependence is very weak, and the triangle P-L-M indeed collapses 
into an extremely small part of the phase diagram. The crowding effect renormalizes 
the values of tl by factors of hundreds larger and make the triangle even smaller. 

This calculation confirms in a dramatic way the suggestion of the previous sec- 
tion; that the presence of an OH phase is linked to the C melting temperature. If an 
OH phase exists, it is more likely an IC fluid rather than an IC floating solid. 
Moreover, one might wonder whether it is possible to escape the conclusion that 
OH phases are completely absent. The obvious conclusion from this calculation is 
that there are no OH phases. Since the OH network is a likely candidate for the 
backbone of the IC fluid at the chiral melting transition, and L a candidate for the 
Lifshitz point, this raises the question of the nature and presence of chiral melting. 
Although there is some debate about the location of the Lifshitz point in the chiral 
3-state Potts model [13-181, there is strong numerical evidence that it is well 
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separated from P [13, 14, 181. Recall that in our approximation L is extremely 
close to P. L is the point along the a = 0 line where bk,T/& becomes less than 
approximately lo-*. Also in our calculation L would move away from P if the 
a = 0 and b =0 lines do not cross at P linearly but approach each other much 
faster, e.g., as exp( - l/d). The entropies that are not yet included, could renor- 
malize the surface tensions of the two types of walls, a and b, in this manner. The 
fact that our approximation for the Potts critical point P is still a factor 1 larger 
than the exact value, indicates that these other entropies must bend the a = 0 and 
b=O lines further considerably. So our calculation does not exclude the iden- 
tification of L with the Lifshitz point, and the possibility of chiral melting from the 
C solid into (a very thin slice of) the OH fluid. Moreover, series expansions for the 
two surface tensions are available [ 133 and confirm that the lines a = 0 and b = 0 
almost coincide until A z a. In [ 131, the location of L was actually characterized 
numerically as the point where these two lines start to diverge significantly. 

5. XH-TYPE HONEYCOMB NETWORKS 

In this section the possibility of an intermediate XH-type honeycomb phase 
(Figs. lc-d) between the C solid and SIC floating solid phases is discussed. Physical 
intuition tells one that the extremely sharp angles between the walls at the intersec- 
tions must lead to high intersection energies, and may tempt one to disregard XH 
networks without further discussion, as too costly with respect to the SIC phase. 
However, Villain pointed out for isotropic networks that breathing entropy 
stabilizes an intermediate HIC phase between the C solid and SIC floating solid all 
the way to zero temperature, irrespective of the strength of the (positive) intersec- 
tion energy. Moreover, this intersection energy is equal to zero in the conventional 
chiral 3-state Potts model with only nearest neighbor interactions between spin 
pairs. 

In the isotropic case, the strength of the intersection energy determines the width 
of the HIC phase and the size of the jump in the domain wall density at the C-HIC 
transition, but does not prevent the HIC phase from extending to zero temperature. 
The discussion of anisotropic OH-type networks in Sections 3 and 4 confirms this. 
The only reason why the OH1 phase does not extend to zero temperature and the 
multicritical point L is located at finite temperature, is that in OH-type networks 
the vertical and tilted walls must be of a different type and therefore have different 
energies. This is circumvented with the construction of the XH networks where all 
walls are of the same type. 

The presence of such an intermediate XH phase would contradict the accepted 
phase diagrams of uniaxial systems, where the possibility of HIC phases has not 
been considered before, but where it is believed that at low temperatures a direct 
transition from the C solid into the SIC solid takes place and that this is a 
Pokrovsky-Talapov transition. If no good reasons turn up for the absence of an 
intermediate XH phase, the conventional phase diagrams of uniaxial systems might 
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have to be modified. On the other hand, if such reasons turn up, it better does not 
apply to isotropic systems because that would shake up the conventional phase 
diagram for isotropic systems. 

The discussion will be restricted to the XHl phase. The XH2 phase replaces the 
XHl phase, if the B-type walls are energetically more favorable than the A-type 
walls, but the results are completely analogous. The free energy of the XH phases is 
approximated in the same way as the free energy of the OH phases in Sections 3 
and 4. 

The approximation for the breathing entropy of XH networks has exactly the 
same form as for OH networks (Appendix A); except that the tilt angle needs to be 
replaced by its complement, 13 --) rc - 8, and the average vertical honeycomb length 
1, by the new average distance between intersections in the uniaxial direction, 
I,+ I,- 21,cos(0), see Fig. 6b. Therefore the free energy of the XHl phase in the 
rigid wall approximation satisfies (11) with 

a=b/4=E,(O)/k,T=(C,-2p)/k,T, 

c = C;/k, T, 

d=2Z,,/k,T+In(ga.). 

(28) 

The results of Section 3 can be transcribed to the XHl phase. Figure 10 replaces 
Fig. 7a. Indeed the intermediate XHl phase separates the C and the SIC phases 
completely to zero temperature. From (16) with a = b/4 it follows that the mul- 
ticritical point where the C, SIC, and XHl phases meet is located at zero tem- 
perature. The C-XHl transition is first-order, see (15). The multicritical point L is 
now the point where the C, OHI, and XHl phases meet. It has moved, but since 
meander entropy will have such a large effect on its location (see Sect. 4), there is 
no need to pay much attention to its location yet. The ratio x = S,/SV, which 

FIG. 10. Phase diagram in the rigid domain wall approximation with both the XH and OH phases 
when C’y> = CA and I,, = I,, = 0. The temperature and chemical potential are in the same units as in 
Fig. la. 
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characterizes the ratio between the tilted and vertical honeycomb lengths, is con- 
stant along the C-XHl phase boundary, x = (,/% - 1)/16 = 0.2965, see (15). 
Therefore the equation of the CXHl phase boundary is simple, 

W, T)’ 41x1 
E=p==(2eg)‘exp kT E,,(O), 

at Ci [ 1 (29) 
B 

where E, (0) = C, - 2~ or given by (5) in the chiral 3-state Potts model language 
and where CI = (1 + x)‘/(2x2) = 12.39. As in Section 3, t: is a measure of temperature. 
The parameter (2eg)’ characterizes again the strength of the breathing entropy, and 
the intersection energy I,, again only renormalizes it. 

Meander excitations are incorporated in the same way as in OH networks, see 
Section 4. First, the wall energy is replaced by the free energy of an isolated mean- 
dering wall (21)-(22). In that approximation the free energy is still given by ( 11) 
but with 

a=h/4= EA(0)/kBT-t,/a,, = (C, -2p)/k,T- t,/a,,, 

c = a,,/(4 t, ), 

d=21,,/k,T+ln(ga,). 

(30) 

Again, this only deforms the phase diagram. It tilts the a = 0 line, but does not 
affect the presence of the XHl phase nor does it change its width, 

c,-2K1+ 1 
E 

2 exp 
d%) 

(31) 

with a = 12.39 on the C-XHl boundary, and CI = cc on the a = 0 line. As in Sec- 
tion 4, we choose E = t, k, T/a,, Notice that (31) is basically the same as (29). The 
extra term on the right-hand side only reflects the tilt of the a = 0 line due to mean- 
der entropy. This tilt is large with respect to the width of the XH phase, i.e., the 
second term is small relative to the first term because (2eg)2 N 100. This confirms 
again that the meander entropy is much stronger than the breathing entropy. 

The XHl phase is extremely narrow up to the melting temperature. The XHl 
phase only includes one type of wall, and therefore has no knowledge about typical 
temperatures like the C melting temperature and the location of L, because those 
temperatures involve the energies of all types of walls. However, typically the com- 
pression energies of the other walls are of the same order of magnitude. So typically 
C melting takes place at a temperature E of order C, due to the meander entropy 
(see Sect. 4). There the width of the XH phase is only of order (2eg) -* - 10p2. 

It is essential to incorporate the crowding effect, to obtain a proper description of 
the SIC phase and XH-SIC phase boundary. Also this is done in the same way as 
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in Section 4, see (24)-(26). The only difference is that the average domain wall den- 
sity in the regions with tilted walls is two times larger than in OH networks, 

f(sT&GP)=2s (J+s )[ aS,/cp+4aS,/cp+ccpS,+d+ln 
T  V 

t,S, 
+- 

l _ sin(~aJ2ST) 

rpa II ~aL/2ST 

Crowding increases the free energy of both the XH and SIC phases. Therefore it is 
not surprising that the C-XHl phase boundary moves closer to the a = 0 line. The 
phase boundaries are given by (31) with tl = 5.22 x lo* on the C-XHl boundary 
and c1= - 1.06 x lo2 on the XHl-SIC boundary. As in Section 4, crowding renor- 
malizes the values of CI enormously. 

The C-XH and XH-SIC transition are still first order, and the jumps in the order 
parameters remain extremely small: x = 0.484 on the C-XHl boundary and x = 32.7 
on the XHl-SIC boundary, and 

a, -= 0, ew( - 21x,lkB T) 
ST (2eg) ’ 

exp( - 21xJk8 7’) 
cp 2.Lzo 

aLtA ’ (2eg) ’ 

(33) 

with o, =6.52x lo--’ and 0,=3.57x lop4 on the C-XHl boundary, and 
w,=2.22x10~2 and o2 = 2.20 x 10-l at the XHl-side of the XHl-SIC boundary. 
The wall density at the SIC side of the XHl-SIC boundary, a,/2S, is given by (33) 
with o1 = 8.75 x 10 -‘. The width of the XHl phase becomes smaller only by a fac- 
tor of 15 due to the crowding effects. Moreover the XHl phase extends still to zero 
temperature! 

What can we conclude about the possibility of an intermediate XH phase? The 
XH phase is indeed realized in these approximations, but is so narrow that it is 
unclear whether it survives when the approximations for the breathing and meander 
entropies are improved, and/or the remaining types of entropy are included. This 
must be addressed in the future by detailed quantitative calculations, using, e.g., 
transfer matrices or Monte Carlo simulations, If the XH phase survives, but 
remains very narrow with order parameters this small, it might be unobservable. 
Maybe the XH phase only survives above a new type of Lifshitz point. 

If the XH phase does not survive, this calculation still suggests that the SIC 
phase becomes soft with respect to the formation of dislocations at the C-SIC 
phase boundary. This may change the Pokrovsky-Talapov (PT) nature of the 
C-SIC phase boundary. From the SIC phase point of view the XH phase is a dis- 
location network. The dislocation core energy Z, may be very large, but this is com- 
pensated by breathing entropy if the dislocations cluster into local XH networks. 
The theory leading to the prediction of the PT nature of the C-SIC transition 
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assumes that the dislocation density is small. The PT transition fixed point is 
located at infinite dislocation core energy. It has been shown by renormalization 
group arguments that dislocations are an irrelevant perturbation in this limit of 
infinite core energy. The breathing entropy softness suggests a possible crossover at 
finite core energies to a new fixed point at large dislocation density, with a different 
type of C-SIC transition, probably first order. 

The enormous difference in strength between breathing and meander entropy 
causes the XH phase to be very narrow. This is specific to uniaxial systems. The 
crucial difference between uniaxial and isotropic systems is that, in addition to 
intersection energy and wall energy, a tilt energy must be paid to form the 
honeycomb network. Breathing entropy is strong enough to compensate this tilt 
energy, but the XH phase is very narrow compared to the isotropic HIC phase. 
Villain’s approximation for the breathing entropy in isotropic networks [S], can 
also be cast into the same form, (6). Therefore this free energy also is given by (11); 
but with fixed tilt angle, cp = tan(rc/3); with tilt energy c=O; and with 
h = 2a/cos(n/3). Then I = ST/S,, = fi = cos(n/3). The C-HIC phase boundary is 
given by 

k T/a = (’ +x)’ (2eg) exp[2Z/k T] E 6 i -27-y 6 (0) .4 ) 

in the rigid wall approximation, and by 

(35) 

if the meander entropy is included in the wall-free energy, but crowding is still 
neglected. This is a bad approximation, because in (21), see Appendix B, the walls 
are only allowed to meander by one unit al in each step. In isotropic systems the 
meander entropy is certainly larger. Moreover (35) is sufficient to illustrate the dif- 
ference in temperature dependence between meander and breathing entropies in 
isotropic and uniaxial systems. 

Compare the rigid wall approximations (34) and (29). Along the CHIC phase 
boundary the chemical potential is linear in the temperature in isotropic systems 
but quadratic in uniaxial systems. So in the rigid wall approximation, the XH phase 
in uniaxial systems is already much narrower than the HIC phase in isotropic 
systems. 

Compare (35) with (31). At low temperatures, the meander term on the right- 
hand side in (35) is not large with respect to the breathing term. The ratio between 
them is strongly temperature dependent, as l/fA, and diverges at zero temperature. 
Therefore the C-HIC phase boundary remains linear in the temperature at very low 
temperatures. In (31), on the other hand, the meander term dominates over the 
breathing term at all temperatures. Therefore the C-XH phase boundary sticks to 
the a = 0 line and behaves exponentially at low temperatures. This difference in 
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behavior originates from the temperature dependence of the tilt angle via the tilt 
energy. The tilt energy C: is dominated by the meander entropy and diverges 
exponentially at zero temperature. 

So in uniaxial systems the XH phases are stable, within our generalization of 
Villain’s theory for isotropic systems, but they are much narrower than in isotropic 
systems because, due to the tilt free energy, the breathing entropy is much weaker 
relative to the meander entropy than in isotropic systems. 

APPENDIX A: BREATHING ENTROPY IN UNIAXIAL SYSTEMS 

In this appendix we obtain an approximation of the breathing entropy of uniaxial 
honeycomb networks with a small tilt angle 8. The object is to find an 
approximation for the number of configurations that can be obtained by breathing 
each semi-regular honeycomb network. Figure 6 shows our notation for the angles 
and sides of the honeycombs. Our approximation is a direct extension of the one 
obtained by Villain [S] for isotropic networks. 

Consider the breathing distances dj of neighboring intersections in the semi- 
regular honeycomb network, see Fig. 5. The index i denotes the axis along which d, 
is measured. In contrast to the isotropic case the Ai are different in different direc- 
tions. The three directions are i= V, R, and L. It is also convenient to introduce the 
breathing distance d, perpendicular to the uniaxial (easy) direction V. 

Because of the rigidity of the walls these four breathing distances are related as 

dv d, d, d, -y-=-E 
sin(0,) sin(8,) sin(0,) sin(8,) sin(8,)’ 

(Al 1 

Their values are restricted by the requirement that the sides of the honeycombs 
must remain positive. A sufficient but not necessary condition for this is 

dv d, 1 Ii 

sin(B,)=sin(f?,) sin(e,)<Z sin(Qi) ’ I 1 
(A21 

for i= V, R, and L, and assuming that 0, and 8, are larger than 742. 
This condition gives a lower bound to the number of breathing modes, by 

dividing this estimate for the maximum breathing length by the lattice cutoff a,. 
This brings into the discussion a new aspect, which is absent in the isotropic case: 
The breathing distance along one axis is in general not a simple rational multiple of 
the di along the other axes. A breathing distance which matches the cutoff lattice 
along one direction does not necessarily match in other directions. All four dj must 
be lattice vectors of the cutoff lattice simultaneously, because all intersections must 
coincide with lattice points of the cutoff lattice. If we take this seriously, we must 
conclude that the breathing entropy is a highly irregular discontinuous function of 
the tilt angle 8. For simple rational values of the angle the entropy will be large, but 
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for nearby higher order rational values the entropy will almost vanish, because the 
di almost never match. Fortunately we do not have to worry too much about this 
esoteric behavior. Apart from the fact that it will smooth out as soon as meander 
excitations in the walls are allowed, it turns out not to be important at small tilt 
angles. Consider the sequence of angles for which it is true that if d, is a lattice vec- 
tor of the cutoff lattice, all other three di lock-in automatically. It is easy to see that 
this set becomes dense in the limit of small tilt angle. So although strictly speaking 
we will restrict ourselves to this set, we can treat 8 as a continuous variable. 

All breathing configurations can now be counted by the number of times when 
d, becomes equal to a lattice vector in the interval given by (A2). The lower bound 
(lb) estimate of the number of breathing modes is 

t.43) 

where v is the total number of honeycombs, dcmax) is the maximum breathing length 
which satisfies all three conditions (A2), and aL the lattice constant of the rec- 
tangular cutoff lattice. Following Villain we replace (A3) by a form which removes 
the need to solve Eq. (A2) first. Using the inequality min(a, 6, c) 2 
(l/a + I/b + l/c)-’ we find 

1 1 
1, sin(8,) + I, sin(8,) I)1 -‘. (A4) 

It is noteworthy that Villain’s approximation for isotropic networks transform into 
(A4) by 

I, + I, sin( O,), 

1, + 1, sin(O,), 

Iv+ -I,.[l/tan(B,)+ l/tan(8,)lP’, 

(A5) 

which are precisely the scale factors needed to distort an isotropic honeycomb into 
the uniaxial honeycomb. 

In addition to the lower bound, Villain also constructed an upper bound 
approximation for the breathing entropy. It only differs from the lower bound by a 
factor g of order unity. We assume, because of the scale factors (A5), that this is 
also the case for the uniaxial network. 

In the text of this paper we restrict ourselves to the special case where the R and 
L walls are of the same type, i.e., where OR = 8, and 1, = 1, = 1,. Then (A4) reduces 
to (6) in Section 3. The precise value of the constant g is unknown, but is not 
crucial for our discussion. In the lower bound approximation g=4. It must be 
stressed that (A4) can only be expected to be a reasonable approximation to the 
true breathing entropy in the limit of large honeycombs (large with respect to the 
cutoff) and small tilt angles. 
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The derivation of the approximation of the breathing entropy of the X-type 
honeycomb networks is similar. The breathing entropy has exactly the same form 
(6), except that 0 now refers to the outside angle, i.e., 8 -+ rc - 0, and that I, does 
not refer anymore to the average vertical side length of the honeycomb, but to 
1,-I,- 21, cos(0) (see Fig. 6b). 

APPENDIXB: FREE ENERGY OF A SINGLE DOMAIN WALL 

In this appendix we derive the free energy of an isolated single meandering 
domain wall between two fixed, but far apart end points. The wall follows the 
bonds of the rectangular cutoff lattice (see also Section 3). We use the transfer 
matrix method. A similar calculation has already been done by Villain [S]. We 
repeat it here, because we need to concentrate on the tilt free energy, which is 
obtained by introducing a tilt angle between the two end points with respect to the 
uniaxial direction. 

The partition function Z(n, m) of a string that starts at site r = (0,O) and ends at 
site r = (nal, ma,,), see Fig. 8, satisfies the recurrence relation 

Zhm)= C z(n+j,m-l)exp[-(E,,a,,+E,a,j)/k,T], (Bl) 
j= ~ 1.0.1 

where E,, is the energy of the wall along the bonds in the uniaxial direction, and E, 
its energy orthogonal to the uniaxial direction. The summation can be restricted to 
nearest neighbours, because E,, 4 E, in uniaxial systems. The initial partition 
function in row m = 0 is equal to Z(n, 0) = 6(n, 0). 

By Fourier transformation of the n coordinate, 

Z(n, m) =&sI Z(k, m) exp(ikn) dk, 
II 

(B2) 

(B 1) diagonalizes, 

-W, m) 
Z(k, m- 1) 

= exp( -El, q/k, T)[ 1 + 2 cos(k) exp( -E, a,/k,T)]. (B3) 

Since the meander probability t = 2 exp( -E, aJkB T) is very small, the partition 
function can be approximated by 

Z(Y, m) z~exp(-mElla,,/k,7’)~~zexp[m(iky+tcos(k))]dk, (B4) 
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where y =n/m relates to the tilt angle 8 as tan(O) = y(aJa,,). Using the steepest 
descent method, we obtain for large m 

Z(y,m)z exp( -mE,,~,,/k,T)(8~m)-"~(t'+y')~"~ 

P-- t +y -ysinh-’ . 05) 
We measure wall lengths by their projection along the vertical direction. For very 

large wall lengths mu,, , the free energy of a single domain wall with macroscopic tilt 
angle 8 is equal to f= -log Z/(a,, m), i.e., 

WI 

which reduces in the limit of infinite wall length to (21) in Section 4. Notice that the 
lowest order finite length correction is logarithmic. 
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